Senin, 06 April 2015

Tugas 04 Sistem Berkas

TUGAS 04
SISTEM BERKAS
MAKALAH
ORGANISASI BERKAS
INDEXED SEQUENTIAL


Disusun Oleh :
Nama     :              LILIK NUGROHO
Nim        :               121051118

JURUSAN TEKNIK INFORMATIKA
FAKULTAS TEKNOLOGI INDUSTRI
INSTITUT SAINS & TEKNOLOGI AKPRIND
YOGYAKARTA
2015

1.      Pengertian Organisasi Berkas Indeks Sequential
Organisasi berkas indeks sequential adalah berkas/file yang disusun sedemikian rupa sehingga dapat diakses secara sequential (berurutan) maupun secara direct (langsung) atau kombinasi keduanya. Atau bisa diartikan bahwa berkas index sequential ini merupakan kombinasi dari berkas sequential dan berkas relatif.
Organisasi berkas ini mirip dengan Organisasi Berkas Sequential dimana setiap rekaman disusun secara beruntun di dalam file, hanya saja ada tambahan indeks yang digunakan untuk mencatat posisi atau alamat dari suatu kunci rekaman di dalam file.

2.      Hal-Hal Yang Berhubungan Dengan Organisasi Berkas Index Sequential

a.      Jenis Akes Berkas Index Sequential :
1)      Akses Sequential (suatu cara pengaksesan record yang didahului pengaksesan record-record didepannya). Contoh Magnetic Tape.
2)      Akses Direct (suatu cara pengaksesan record yang langsung, tanpa mengakses seluruh record yang ada). Contoh: Magnetic Disk.

b.      Jenis Proses Berkas Index Sequential :
1)      Batch (proses mengolah data dengan menghimpunnya terlebih dahulu kemudian mengatur dan mengelompokkannya ke dalam kelompok-kelompok yang disebut batch atau bisa diartikan suatu proses yang dilakukan secara group dan kelompok). Contoh File ada kalau didukung file lain, file nilai, ada dosen, mahasiswa, dan lain-lain.
2)      Interactive (mengolah data dengan saling berhubungan atau berkaitan secara langsung yang dilakukan secara satu persatu yaitu record demi record). Contoh pencarian IPK mahasiswa yang lebih dari 3.

c.       Struktur Berkas Index Sequential:
1)      Index =binary search tree
2)      Data =sequential
Index-nya digunakan untuk melayani sebuah permintaan untuk mengakses sebuah record tertentu. Sedangkan data-nya digunakan untuk mendukung akses squential terhadap seluruh kumpulan-kumpulan record.

3.      Keuntungan dan Kerugian Dalam Organisasi Berkas Index Sequential :

a.      Kegunaan Sekaligus Keunggulan Index Sequential File
·      Bentuk file yang paling banyak dipakai.
·      Dipakai bila file ingin selalu dalam kondisi up to date.
·      Sebuah record dapat di insert (dimasukkan/ditambah) atau di retrieve (dibetulkan/dikembalikan semula) secara langsung melalui indexnya.
·      Sangat sesuai untuk proses secara on-line
·      Bisa juga diakses secara sequential
·      Mempunyai semua keunggulan dari sequential file
b.      Kelemahan Index Sequential File

·         Search/pencarian hanya bisa melalui sebuah key saja, yaitu key yang mengurutkan file Performance.
·         Diperlukan perubahan data, maka seluruh record yang tersimpan didalam master file ini, harus semuanya diproses terlebih dahulu.
·         Data yang tersimpan harus sudah urut (sorted).
·         Posisi data yang tersimpan sangat sulit untuk up-to-date, sebab master file hanya bisa berubah saat proses selesai dilakukan.
·         Tidak bisa dilakukan secara langsung.

4.      Tahapan Dalam Organisasi Berkas Secara Sequential
Ada beberapa tahapan dalam organisasi berkas secara sequential, yaitu : 
1.      Pengumpulan Data
Proses dimana data yang ada dikumpulkan secara berurut berdasarkan klasifikasi yang membedakannya. Pada tahap pengumpulan data ini, semua data akan diurutkan secara bertahap dan terorganisir dengan baik.
2.      Pemasukkan Data ( Input Data )
Pada tahap ini, data-data yang telah dibedakan dan dikumpulkan tersebut akan secara permanent dimasukkan ( di input ) kedalam suatu device penyimpanan. Device ( media ) penyimpanan ini dapat berupa memori atau device penyimpanan lainnya.
3.      Pengeditan Data
Tahap selanjutnya yang harus dilakukan dalam proses secara sequential adalah pengeditan data. Setelah data yang ada dikumpulkan dan proses input data juga telah dilakukan maka proses selanjutnya adalah editing. Dalam tahap ini data yang telah di input akan diubah ( edit ).
4.      Penyortiran Data Yang Telah Di Edit
Tahap terakhir dalam tahap sequential ini adalah penyortiran. Setelah user melakukan pengeditan pada data-data yang ada, maka selanjutnya data yang telah di edit tersebut kan di sortir.

5.      STRUKTUR POHON
Sebuah pohon (tree) adalah struktur dari sekumpulan elemen, dengan salah satu elemennya merupakan akarnya atau root, dan sisanya yang lain merupakan bagian-bagian pohon yang terorganisasi dalam susunan berhirarki, dengan root sebagai puncaknya.
Contoh umum dimana struktur pohon sering ditemukan adalah pada penyusunan silsilah keluarga, hirarki suatu organisasi, daftar isi suatu buku dan lain sebagainya.


Akar pohon (root) adalah Handoko.
Secara rekursif suatu struktur pohon dapat didefinisikan sebagai berikut:
·         Sebuah simpul tunggal adalah sebuah pohon.
·         Bila terdapat simpul n, dan beberapa sub-pohon T1,T2,...,Tk, yang tidak     saling berhubungan,  yang  masing-masing  akarnya adalah n1,n2,..., nk, dari simpul/sub pohon ini dapat dibuat sebuah pohon baru dengan n sebagai akar dari simpul-simpul n1,n2,...,nk.

6.      POHON BINER
Pohon Biner adalah Binary Tree atau Pohon Biner adalah sebuah tree yang setiap nodenya maksimal hanya memiliki dua anak. Salah satu tipe pohon yang paling banyak dipelajari adalahpohon biner. Pohon  Biner  adalah  pohon  yang  setiap simpulnya  memiliki  paling banyak dua buah cabang/anak.
Contoh:


Pada contoh gambar tersebut, indeksnya disusun berdasarkan binary search tree. Indeksnya digunakan untuk melayani sebuah permintaan untuk mengakses sebuah record tertentu, sedangkan berkas data sekeunsial digunakan untuk mendukung akses sekuensial terhadap seluruh kumpulan record-record.



7.      IMPLEMENTASI ORGANISASI BERKAS INDEX SEQUENTIAL
Ada 2 pendekatan dasar untuk mengimplementasikan konsep dari organisasi berkas indeks sequential , yaitu:
1.      Blok Indeks dan Data (Dinamik)
2.      Prime dan Overflow Data Area (Statik)
Kedua pendekatan tersebut mengunakan sebuah bagian indeks dan sebuah bagian data, dimana masing-masing menempati berkas yang terpisah.
Alasannya :
 Karena Kedua pendekatan tersebut menggunakan bagian indeks dan bagian data, dimana masing-masing menempati file yang terpisah. Karena diimplementasikan pada organisasi internal yang berbeda. Masing-masing file tersebut harus menempati pada alat penyimpan yang bersifat Direct Access Storage Device (DASD).


Keterangan:
a.      Blok Indeks dan Data (Dinamik)
Pada pendekatan ini berkas indeks dan berkas data diorganisasikan dalam blok. Berkas indeks mempunyai struktur tree, sedangkan berkas data mempunyai struktur sekuensial dengan ruang bebas yang didistribusikan antar populasi record.
Untuk cara pertama, kita menyusun data dengan lebih memperhatikan ke data yang bersifat logik, bukan fisik. Jadi, data dan index diorganisasikan ke dalam blok-blok. Blok-blok index diorganisasi secara sequential (consecutive) dan bertingkat-tingkat (misal setiap blok hanya berisi 4 record index yang berisi key field dan pointer).
Setiap tingkat akan menuju ke blok data (misal setiap blok hanya berisi 4 record data) di tingkat selanjutnya dan seterusnya menuju ke blok data yg akan mendapatkan record yg dicari secara direct.
Bila dilakukan penyisipan data dan blok tertentu (tempat data baru itu) sudah penuh (tidak ada tempat kosong/ padding lagi), maka akan dilakukan reorganisasi blok dengan membentuk blok baru. Tentu, mungkin saja perubahan ini akan berdampak pada isi blok index-nya.
Bila dilakukan penyisipan data dan track tertentu (tempat data baru itu) sudah penuh (tidak ada tempat kosong/ padding lagi), maka akan dilakukan reorganisasi track dengan membentuk track baru.Tentu, track baru itu di luar prime data file-nya, yaitu di overflow data area-nya
.Contohnya ;

 Pada gambar tersebut ada N blok data dan 3 tingkat dari indeks. Setiap entry pada indeks mempunyai bentuk (nilai key terendah, pointer), dimana pointer menunjuk pada blok yang lain, dengan nilai key-nya sebagai nilai key terendah. Setiap tingkat dari blok indeks menunjuk seluruh blok, kecuali blok indeks pada tingkat terendah yang menunjuk ke blok data.
Jika sebuah permintaan untuk mengakses record tertentu, misal kita ingin mengakses dengan nilai key BAT, indeks dengan tingkat tertinggi (dalam hal ini blok indeks 3-1) yang pertama yang akan dicari pada contoh ini, pointer dari AARDVARK menunjuk blok indeks 2-1. Pointer yang ditunjuk pada kotak tersebut adalah pointer yang berisikan AARDVARK, yang akan menunjuk ke blok indeks 1-1. Pointer berikutnya yang akan ditunjuk adalah pointer yang berisi BABOON, yang selanjutnya akan menunjuk blok data 2. Blok data ini akan mencari untuk record dengan key tujuan, yaitu BAT, dimana pada blok ini record tersebut ditemukan.



b.      Prime dan Overflow Data Area (Statik)
Pendekatan lain untuk mengimplementasikan berkas indeks sequential adalah berdasarkan struktur indeks dimana struktur indeks ini lebih ditekankan pada karakteristik hardware (fisik) dari penyimpanan, dibandingkan dengan distribusi secara logik dari nilai key.
Indeksnya ada beberapa tingkat, misalnya tingkat cylinder index dan tingkat track index. Berkas datanya secara umum diimplementasikan sebagai 2 berkas, yaitu prime area dan overflow area.
Contohnya :

Setiap cylinder dari alat penyimpanan mempunyai 4 track. Pada berkas binatang ada 6 cylinder yang dialokasikan pada prime data area. Track pertama (nomor 0) dari setiap cylinder berisi sebuah indeks pada record key dalam cylinder tersebut.
Dalam sebuah track data, tracknya disimpan secara urut berdasarkan nilai key. Tingkat pertama dari indeks dalam berkas indeks dinamakan master indeks. Tingkat kedua dari indeks dinamakan cylinder indeks.
Entry pada master indeks: nilai key tertinggi, pointer. Entry pada cylinder indeks: nilai key tertinggi, nomor cylinder.
Contoh Pengaksesan:
Misal : mengakses dengan nilai key BAT
Ø  Pertama : Cari pada master indeks,
Ø  Kedua : Karena BAT ada di depan LYNX, maka pointer dari LYNX akan menunjuk ke cylinder index,
Ø  Ketiga : Karena BAT ada di depan ELEPHANT, maka pointer dari ELEPHANT akan menunjuk ke track 0 dari cylinder 1,
Ø  Keempat : Karena BAT ada di belakang BABOON dan di depan COW, maka pointer dari BABOON akan menunjuk ke track 2,
Ø Kelima : Cari secara sequential sampai BAT ditemukan.

Hal ini bisa disimpulkan: Permintaan untuk mengakses data secara sequential akan dilakukan dengan mengakses cylinder dan track dari berkas data prime secara urut.






DAFTAR PUSTAKA




Read More

Sabtu, 04 April 2015

Tugas 02 Sistem Berkas

TUGAS 02
SISTEM BERKAS
MAKALAH
ORGANISASI BERKAS
PADA MAGNETIC TAPE & MAGNETIC DISK

Disusun Oleh :
Nama     :              LILIK NUGROHO
Nim        :               121051118

JURUSAN TEKNIK INFORMATIKA
FAKULTAS TEKNOLOGI INDUSTRI
INSTITUT SAINS & TEKNOLOGI AKPRIND
YOGYAKARTA
2015
1.     Magnetic Tape
a.      Pengertian Magnetic Tape
Magnetic Tape (Pita Magnetik) merupakan model pertama dari External Storage (Secondary Storage). Pita ini juga dipakai untuk alat input/output dimana informasi dimasukkan ke CPU dari Media ini dan informasi dapat diambil dari CPU lalu disimpan pada media ini juga. Panjang pita ini pada umumnya 2400 feet, lebarnya 0.5 inch dan tebalnya 2 mm. Jumlah data yang ditampung tergantung pada model pita magnetik yang digunakan. Untuk pita yang panjangnya 2400 feet, dapat menampung kira-kira 23.000.000 karakter. Penyimpanan data pada pita ini adalah dengan cara sequential. Sekarang pita magnetik berbentuk cartridge. Data ditulis pada pita magnetik dengan memberikan sifat magnetis pada daerah sepanjang pita.
b.      Representasi Data dan Density pada pita magnetik
Data direkam secara digit pada media ini sebagai titik-titik magnetisasi pada lapisan ferroksida. Magnetisasi positif menyatakan 1 bit, sedangkan magnetisasi negatif menyatakan 0 bit atau sebaliknya. Tape terdiri atas 9 track, 8 track dipakai untuk merekam data dan track yang ke 9 untuk koreksi kesalahan. Salah satu karakteristik yang penting dari pita magnetic ini adalah density (kepadatan) dimana data disimpan. Density adalah fungsi dari media tape dan drive yang digunakan untuk merekam data ke media tadi. Satuan yang digunakan density adalah bytes per inch (bpi). Umumnya density dari tape adalah 1600 bpi dan 6250 bpi. (bpi ekivalen dengan charakter per inch)



c.       Parity dan Error Control pada Magnetic Tape
Salah satu teknik untuk memeriksa kesalahan pada pita magnetik adalah dengan parity check. Jenis-jenis Parity Check adalah :
·         ODD PARITY (Parity Ganjil), Jika data direkam dengan menggunakan odd parity, maka jumlah 1 bit yang merepresentasikan suatu karakter adalah ganjil. Jika jumlah 1 bitnya sudah ganjil, maka parity bit yang terletak pada track ke 9 adalah 0 bit, akan tetapi jika jumlah 1 bitnya masih genap maka parity bitnya adalah 1 bit.
·         EVEN PARITY ( Parity Genap), Bila kita merekam data dengan menggunakan even parity, maka jumlah 1 bit yang merepresentasikan suatu karakter adalah genap jika jumlah 1 bitnya sudah genap, maka parity bit yang terletak pada track ke 9 adalah 0 bit, akan tetapi jika jumlah 1 bitnya masih ganjil maka parity bitnya adalah 1 bit.
Misal :
Track
1 : 0 0 0 0 0 0
2 : 1 1 1 1 1 1
3 : 1 1 1 1 1 1
4 : 0 1 0 1 0 1
5 : 1 1 0 1 1 0
6 : 1 1 1 1 0 0
7 : 0 1 1 1 1 0
8 : 0 0 1 1 1 1
Bagaimana isi dari track ke 9, jika untuk merekam data digunakan Odd Parity dan Even Parity ?

Penyelesaian :

ODD PARITY

Track   9          :           1          1          0          0          0          1
EVEN PARITY

Track   9          :           0          0          1          1          1          0
Sistem Block pada Pita magnetik

Data yang dibaca dari atau ditulis ke media ini dalam suatu grup karakter disebut block. Suatu block adalah jumlah terkecil dari data yang dapat ditransfer antara secondary memory dan primary memory pada saat akses. Sebuah block dapat terdiri dari satu atau lebih record. Sebuah block dapat merupakan physical record. Diantara 2 block terdapat ruang yang disebut sebagai gap (inter block gap). Panjang masing-masing gap adalah 0.6 inch. Ukuran block dapat mempengaruhi jumlah data/record yang dapat disimpan dalam tape.
Menghitung Kapasitas Penyimpanan & waktu akses pada Tape
Misal :
Akan dibandingkan berapa banyak record yang disimpan dalam tape bila :
1 block berisi 1 record
1 record = 100 charakter ; dengan
1 block berisi 20 record
1 record = 100 charakter
Panjang tape yang digunakan adalah 2400 feet, density 6250 bpi dan panjang gap 0.6 inch.
Penyelesaian :


Menghitung Waktu Akses
Misal : Kecepatan akses tape untuk membaca/menulis adalah 200 inch/sec. Waktu yang dibutuhkan untuk berhenti dan mulai pada waktu terdapat gap adalah 0.04 second. Hitung waktu akses yang dibutuhkan tape tersebut, dengan menggunakan data pada contoh sebelumnya.
Penyelesaian :

Keuntungan Penggunaan Magnetic Tape
·         Panjang record tidak terbatas
·         Density data tinggi
·         Volume penyimpanan datanya besar dan harganya murah
·         Kecepatan transfer data tinggi
·         Sangat efisiensi bila semua atau kebanyakan record dari sebuah tape file memerlukan pemrosesan seluruhnya
Keterbatasan penggunaan Magnetic Tape
·         Akses langsung terhadap record lambat
·         Masalah lingkungan
·         Memerlukan penafsiran terhadap mesin
·         Proses harus sequential
·         Organisasi Berkas dan Metode Akses pada Magnetic Tape

Untuk membaca atau menulis pada suatu magnetic tape adalah secara sequential. Artinya untuk mendapatkan tempat suatu data maka data yang didepannya harus dilalui terlebih dahulu. Maka dapat dikatakan organisasi data pada file didalam tape dibentuk secara sequential dan metode aksesnya juga secara sequential.
Macam – macam Magnetik tape, misalnya:
·         Mini cartridge : dapat menampung data sebesar 250 MB sampai 8 GB).
·         Videotape/Videocassette (Pita Video/Kaset Video) : merupakan alat penyimpanan komputer yang banyak ditemui di pasaran. Videotape terdiri dari berbagai macam format, baik dalam format analog maupun digital. Format analog misalnya VHS, S-VHS ataupun format berkualitas broadcast, yaitu : Betacam, Format digital dapat dalam MiniDV, DVC-Pro,DVCAM, HDCAM, Hi8, DVHS, atau format digital untuk kualitas broadcast Betacam Digital.





2.      Magnetic Disk
A.     Pengertian Magnetic Disk 
Disk merupakan sebuah piringan bundar yang terbuat dari logam atau plastik yang dilapisi dengan bahan yang dapat dimagnetisasi. Data direkam di atasnya dan kemudian dapat dibaca dari disk dengan menggunakan kumparan pengkonduksi (conducting coil), yang dinamakan head. Selama operasi pembacaan dan penulisan, head bersifat stationer sedangkan piringan bergerak-gerak di bawahnya.
Mekanisme penulisan berdasarkan berdasarkan pada medan magnet yang dihasilkan arus listrik yang mengalir melalui sebuah kumparan. Pulsa kemudian dikirimkan ke head, dan pola-pola megnetik direkam pada permukaan di bawahnya, dengan pola yang berbeda bagi arus listrik yang berada di dalam kumparan yang dihasilkan oleh medan listrik yang bergerak relative terhadap kumparan. Pada saat permukaan disk melintasi bagian bawah head, maka ermukaan disk mengeluarkan arus yang mempunyai polaritas yang sama dengan polaritas yang telah direkam.
B.   Karakteristik Fisik pada Magnetic Disk
Disk Pack adalah jenis alat penyimpanan pada magnetic disk, yang terdiri dari beberapa tumpukan piringan aluminium. Dalam sebuah pack / tumpukan umumnya terdiri dari 11 piringan. Setiap piringan diameternya 14 inch (8 inch pada mini disk) dan menyerupai piringan hitam. Permukaannya dilapisi dengan metal-oxide film yang mengandung magnetisasi seperti pada magnetic tape.
Banyak track pada piringan menunjukkan karakteristik penyimpanan pada lapisan permukaan, kapasitas disk drive dan mekanisme akses. Disk mempunyai 200 – 800 track per-permukaan (banyaknya track pada piringan adalah tetap). Pada disk pack yang terdiri dari 11 piringan mempunyai 20 permukaan untuk menyimpan data.
Kedua sisi dari setiap piringan digunakan untuk menyimpan data, kecuali pada permukaan yang paling atas dan paling bawah tidak digunakan untuk menyimpan data, karena pada bagian tersebut lebih mudah terkena kotoran / debu dari pada permukaan yang di dalam. Juga arm pada permukaan luar hanya dapat mengakses separuh data.
Untuk mengakses, disk pack disusun pada disk drive yang didalamnya mempunyai sebuah controller, access arm, read / write head dan mekanisme untuk rotasi pack. Ada disk drive yang dibuat built-in dengan disk pack, sehingga disk pack ini tidak dapat dipindahkan yang disebut non-removable. Sedangkan disk pack yang dapat dipindahkan disebut removable.
Disk controller menangani perubahan kode dari pengalamatan record, termasuk pemilihan drive yang tepat dan perubahan kode dari posisi data yang dibutuhkan disk pack pada drive. Controller juga mengatur buffer storage untuk menangani masalah deteksi kesalahan, koreksi kesalahan dan mengontrol aktivitas read / write head.
Susunan piringan pada disk pack berputar terus-menerus dengan kecepatan perputarannya 3600 per-menit. Tidak seperti pada tape, perputaran disk tidak berhenti di antara piringan-piringan pada device.
Kerugiannya bila terjadi situasi dimana read / write head berbenturan dengan permukaan penyimpanan record pada disk, hal ini disebut sebagai head crash.

C.   Cara Kerja Magnetic Disk
1.      Representasi Data dan Pengalamatan
Data pada disk juga di block seperti data pada magnetic tape. Pemanggilan sebuah block adalah banyaknya data yang diakses pada sebuah storage device. Data dari disk dipindahkan ke sebuah buffer pada main storage computer untuk diakses oleh sebuah program. Kemampuan mengakses secara direct pada disk menunjukkan bahwa record tidak selalu diakses secara sequential. Ada 2 teknik dasar untuk pengalamatan data yang disimpan pada disk, yaitu :
1.      Metode Silinder;
Pengalamatan berdasarkan nomor silinder, nomor permukaan dan nomor record. Semua track dari disk pack membentuk suatu silinder. jadi bila suatu disk pack dengan 200 track per-permukaan, maka mempunyai 200 silinder.
Bagian nomor permukaan dari pengalamatan record menunjukkan permukaan silinder record  yang disimpan.  Jika ada 11  piringan, maka nomor permukaannya dari 0 – 19 (1 – 20). Pengalamatan dari nomor record menunjukkan dimana record terletak pada track yang ditunjukkan dengan nomor silinder dan nomor permukaan.
2.      Metode Sektor
Setiap track dari pack dibagi ke dalam sektor-sektor. Setiap sektor adalah storage area untuk banyaknya karakter yang tetap. Pengalamatan recordnya berdasarkan nomor sektor, nomor track dan nomor permukaan. Nomor sektor yang diberikan oleh disk controller menunjukkan track mana yang akan diakses dan pengalamatan record terletak pada track yang mana.
Setiap track pada setiap piringan mempunyai kapasitas penyimpanan yang sama, meskipun diameter tracknya berlainan. Keseragaman kapasitas dicapai dengan penyesuaian density yang tepat dari representasi data untuk setiap ukuran track. Keuntungan lain pendekatan keseragaman kapasitas adalah file dapat ditempatkan pada disk tanpa merubah lokasi nomor sektor (track atau cylinder) pada file.
2.      Movable-Head Disk Access
Movable-head disk drive mempunyai sebuah read/write head untuk setiap permukaan penyimpanan recordnya. Sistem mekanik yang digunakan oleh kumpulan posisi dari access-arm sedemikian sehingga read / write head dari pengalamatan permukaan menunjuk ke track. Semua access-arm pada device dipindahkan secara serentak tetapi hanya head yang aktif yang akan menunjuk ke permukaan.
3.      Cara Pengaksesan Record yang Disimpan pada Disk Pack
Disk controller merubah kode yang ditunjuk oleh pengalamatan record dan menunjuk track yang mana pada device tempat record tersebut. Access arm dipindahkan, sehingga posisi read / write head terletak pada silinder yang tepat.
Read / write head ini menunjuk ke track yang aktif. Maka disk akan berputar hingga menunjuk record pada lokasi read / write head. Kemudian data akan dibaca dan ditransfer melalui channel yang diminta oleh program dalam komputer.
   ACCESS TIME  =  SEEK TIME (pemindahan arm ke cylinder)
                               +  HEAD ACTIVATION TIME (pemilihan track)
                               +  ROTATIONAL DELAY (pemilihan record)
                               +  TRANSFER TIME 
§  Seek Time
Adalah waktu yang dibutuhkan untuk menggerakkan read / write head pada disk ke posisi silinder yang tepat.
§  Head Activational Time
Adalah waktu yang dibutuhkan untuk menggerakkan read / write head pada disk ke posisi track yang tepat.
§  Rotational Delay (Lateney)
Adalah waktu yang dibutuhkan untuk perputaran piringan sampai posisi record yang tepat.
§  Transfer Time
Adalah waktu yang menunjukkan kecepatan perputaran dan banyaknya data yang ditransfer.
4.      Fixed - Head Disk Access
Disk yang mempunyai sebuah read / write head untuk setiap track pada setiap permukaan penyimpanan, yang mekanisme pengaksesannya tidak dapat dipindahkan dari cylinder ke cylinder.
ACCESS TIME  =  HEAD-ACTIVATION TIME  +  ROTATIONAL DELAY +  TRANSFER TIME 
Banyaknya read / write head menyebabkan harga dari fixed-head disk drive lebih mahal dari movable-head disk drive. Disk yang menggunakan fixed-head disk drive mempunyai kapasitas dansdensity yang lebih kecil dibandingkan dengan disk yang menggunakan movable-head disk drive.
5.           Organisasi Berkas dan Metoda Akses pada Magnetic Disk
Untuk membentuk suatu berkas di dalam magnetic disk bisa dilakukan secara sequential, index-sequential ataupun direct. Sedangkan untuk mengambil suatu data dari berkas yang disimpan dalam disk, bisa dilakukan secara langsung dengan menggunakan direct access method atau dengan sequential access method (secara sequential).

D.   Perkembangan Magnetic Disk dari Masa ke Masa
  • Punch Card (Kartu berlubang) 
Dipakai pada era computer Era pertama dan Kedua,Biasanya digunakan untuk memasukan/input data ke computer.dan biasanya terdiri dari 80 – 96 kolom.
  • Punched Paper Tape 
Punched paper tape juga sangat populer pada komputer generasi awal. Data yang ada akan direkam kedalam tape melalui lubang yang mengelilinginya. Punched paper tape juga terbagi menjadi baris dan kolom. Setiap karakter yang ada akan disajikan dalam bentuk lubang-lubang yang merupakan kombinasi antara kolom dan baris. Untuk memasukkan data kedalam CPU, maka data-data yang sudah terekam dalam bentuk kode didalam punched papertape, juga harus dibaca terlebih dahulu oleh punched reader.
  • Selectron Tube
Selectron Tube memori komputer generasi 1946 mampu menampung data 4096 bits, atau setara 512 byte.
  • Magnetic tape
Magnetic tape merupakan media penyimpanan data yang biasanya digunakan untuk komputer jenis mini ataupun mainframe. Terdapat dua jenis magnetic tape yang biasanya digunakan oleh komputer. Jenis pertama mempunyai bentuk standart yang memiliki lebar pita 1/2 " (12.7 mm). Magnetic tape terbuat dari plastik tipis yang dilapisi magnetic pada permukaannya.Sedangkan Bentuk kedua adalah kaset ataupun catridge seperti halnya yang telah kita kenal pada kaset yang terdapat di audio tape recorder. Data yang ada disini juga disimpan dalam bentuk kode-kode tertentu seperti halnya yang terdapat dalam pita magnetic ukuran standart. Kaset ataupun catridge banyak digunakan pada komputer jenis home-komputer. 
  • Compact Cassette
            Biasa disebut kaset, pita kaset, atau tape adalah media penyimpan data yang umumnya berupa lagu.
·         Magnetic Drum
Magnetic Drum memiliki panjang 16 inci yang bekerja 12.500 putaran tiap menit. Media ini digunakan untuk menunjang computer IBM
  • Floppy Disk
Disket merupakan media penyimpanan yang sangat populer bagi personal komputer. Secara pisik, disket terbuat dari lempengan plastik yang berbentuk bundar dimana pada permukaannya dilapisi oleh magnit sebagai tempat untuk menyimpan guratan-guratan data. Untuk menjaga agar data ataupun program yang tersimpan didalam disket tetap terjaga kebersihannya, disket kemudian dibungkus oleh karton yang berbentuk segi empat. Untuk melakukan pembacaan ataupun penulisan, disket harus dimasukkan kedalam sebuah drive, drive ini kemudian disebut sebagai disket-drive. Pada setiap drive yang ada, telah berisi sebuah shaft dan sebuah drive motor yang berfungsi untuk memutar disket dengan kecepatan sekitar 360 hingga 500 rpm. Sebuah sinyal elektronik yang datang dari sistem kontrol, akan menyebabkan read/write head yang berfungsi untuk melakukan pembacaan/penulisan untuk terus bergerak diatas permukaan disket yang sedang berputar guna melakukan pembacaan/ penulisan.
Bagian-bagian dari disket adalah :
ü Stress relief cutouts, berfungsi untuk membuka/tutup pengait drive. 
ü Read/Write Windows, merupakan jendela yang digunakan untuk membaca dan menulis dari mekanisme drive. 
ü Hub ring, berfungsi sebagai pegangan untuk memutar disket. 
ü Index Hole, apabila lubang yag ada pada karton/cover menumpuk dengan lubang pada disket, menandakan posisi sector 0. 
ü Write, lubang ini apabila dalam posisi terbuka, maka disket bisa dibaca dan ditulis; Apabila tertutup maka disket hanya bisa dibaca saja. 
ü Label, digunakan untuk menulis nama pemilik disket ataupun nama program/data yang tersimpan didalamnya. 
•        Hard Drive/Hard Disk
Hard disk merupakan salah media penyimpan data yang cukup populer bagi mainframe ataupun PC. Harddisk merupakan media penyimpanan yang memiliki bentuk pisik yang berbeda jika dibanding dengan disket. Secara umum hard disk biasanya terpasang dan menyatu didalam CPU (fixed disk). Mekanisme yang menyebabkan data yang tersimpan bisa dibaca ataupun ditulis didalam hard disk, disebut sebagai disk drive. Didalam hard disk terdapat lempengan-lempengan logam bundar yang disusun berlapis-lapis serta terdapat motor penggerak lempengan logam dan read/write head-nya. Keunggulan dari hard disk adalah mampu menampung data dalam jumlah yang sangat besar serta memiliki kecepatan pada saat memanggil kembali data yang tersimpan. Harddisk dengan ukuran 3 Giga Byte pada saat ini sudah dianggap terlalu kecil, dan kini mulai beredar harddisk dengan ukuran yang jauh lebih besar.


E.   Kelebihan dan Kekurangan Penggunaan Magnetic Disk
Media magnetik seperti disket floppy dan hard disk mempunya sejumlah keunggulan dibanding dengan media lainnya. Penyimpanan data pada media ini bersifat nonvolatile, artinya data yang telah disimpan tidak akan hilang ketika komputer dimatikan. Data pada media ini dapat dibaca, dihapus dan ditulis ulang. Keunggulan lainnya ialah, media ini mudah digunakan. Selain memiliki keunggulan, media ini juga mempunyai kelemahan.
Musuh utama dari media magnetik seperti disket floppy dan hard disk ialah jamur dan karat. Karena jamur dan karat ini, maka daya tahan atau umur media ini menjadi pendek. Jika dipakai secara kontinu atau terus menerus sekitar 8 jam per hari, maka umur suatu disket floppy paling lama 1 (satu) tahun, dan umur hard disk paling lama 3 (tiga) tahun. Kelemahan lain dari media magnetik ini ialah bentuknya yang bergaris-garis (track, sector), sehingga kecepatan dan kapasitas simpannya termasuk rendah jika dibanding dengan media optik.








DAFTAR PUSTAKA


Read More